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ABSTRACT

Background: Coronary artery disease (CAD) is strongly influenced by genetic factors, particularly
non-synonymous single nucleotide polymorphisms (nsSNPs) that alter protein structure and
function. Variants within lipid metabolism—related genes such as APOAS, PCSK9, LPL, and LIPA

“Cli ite” Lo . . . . .
Click to Cite are implicated in atherosclerosis progression, yet their molecular consequences remain

incompletely defined. Objective: This study aimed to comprehensively characterize the structural
and functional impact of selected CAD-associated nsSNPs using an integrative computational
approach. Methods: Reported nsSNPs from the GWAS catalog were retrieved, and detailed variant
data were obtained from UniProt and NCBI. Functional impacts were predicted using sequence
homology—based (SIFT, PROVEAN, Mutation Assessor), machine learning—based (SNAP2,
SuSPect, PolyPhen-2), and consensus predictors (Meta-SNP). Structural stability was assessed by
I-Mutant, MUpro, mCSM, and DynaMut2, while evolutionary conservation, surface accessibility,
and post-translational modifications were analyzed with ConSurf, NetSurf-2.0, and MusiteDeep.
Protein—protein interactions were mapped via STRING, and molecular docking was performed
using ClusPro and SwissDock. Results: APOAS5 G185C, PCSK9 R46L and R93C, LPL N318S, and
LIPA T16P were consistently predicted to be deleterious, with most variants exhibiting negative A1G
values indicative of destabilization. Docking analysis revealed reduced binding affinities and altered
interaction residues, suggesting disruption of lipid regulatory pathways. Conclusion: This
integrative in-silico analysis highlights critical CAD-related nsSNPs that destabilize protein
structure and impair molecular interactions, underscoring their potential as biomarkers and
therapeutic targets.
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INTRODUCTION

Coronary artery disease (CAD), also referred to as ischemic heart disease (IHD) or coronary heart disease (CHD), remains a leading cause of
mortality in industrialized nations. Despite significant advancements in both prevention and treatment (1), CAD continues to pose a major global
health challenge, accounting for more than 3.9 million deaths in Europe and 1.8 million in the European Union annually. In the United States,
more than 18.2 million individuals are affected, with approximately 805,000 developing acute coronary syndrome (ACS) each year (2). By 2030,
the global mortality associated with CHD is projected to reach nearly 9.245 million, highlighting the increasing global burden reported by the
World Health Organization (3).

The underlying cause of CAD is primarily the buildup of atherosclerotic plaques in the epicardial coronary arteries, which restricts blood flow (4).
Although the precise pathological and physiological mechanisms remain incompletely understood, both genetic and environmental factors play
critical roles in disease progression. Established risk factors include advanced age, dyslipidemia, obesity, hypertension, diabetes mellitus, tobacco
use, alcohol consumption, and unhealthy lifestyle practices. Genome-wide association studies (GWAS) have identified over 230 genetic variants
significantly associated with CAD (5). Importantly, research suggests that the pathophysiology of CAD extends beyond epicardial atherosclerotic
plaques, with coronary microcirculation also playing a pivotal role in disease manifestation (6).

CAD presents with a wide clinical spectrum, ranging from asymptomatic subclinical atherosclerosis to severe outcomes such as angina pectoris,
acute myocardial infarction (MI), and sudden cardiac death (SCD) (7). This broad phenotypic variability results from complex interactions between
genetic mutations and environmental exposures, including dietary patterns, physical activity, tobacco use, and comorbidities (8). Among the genes
implicated in lipoprotein metabolism, APOAS, PCSK9, LPL, and LIPA are of particular importance. Since lipoprotein metabolism is central to
atherosclerotic plaque formation, mutations in these genes are strongly linked with CAD.

The lipoprotein lipase (LPL) gene, located on chromosome 8p21.3, encodes an enzyme critical for lipid metabolism by mediating the hydrolysis
of very low-density lipoproteins (VLDL) into low-density lipoproteins (LDL-C). Mutations in LPL are associated with lipoprotein lipase
deficiency, a rare autosomal recessive disorder characterized by markedly elevated triglyceride levels, lactescent serum, reduced concentrations of
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HDL-C and LDL-C, and clinical features such as eruptive xanthomas, abdominal pain, hepatosplenomegaly, and, in some cases, early-onset
atherosclerotic CAD (9).
The proprotein convertase subtilisin/kexin type 9 (PCSK9) gene, located on chromosome 1p32.3, encodes a protease that downregulates LDL
receptor (LDLR) expression in both hepatic and extrahepatic tissues (10). Mutations in PCSK9 reduce LDL receptor density, leading to elevated
plasma total cholesterol and LDL-C levels. Clinically, such alterations are associated with tendon xanthomas, premature CAD, myocardial
infarction, and ischemic stroke (11).

Coronary Artery
Disease

LIPA T16P

Figure 1 Schematic Representation of CAD-Associated Gene Variants

The APOAS gene encodes apolipoprotein A-V (apoA-V), a key regulator of plasma triglyceride concentrations. Genetic variants in APOAS have
been consistently associated with altered lipid metabolism and an increased risk of CAD (12).

The LIPA gene encodes lysosomal acid lipase (LAL), an enzyme essential for hydrolyzing cholesterol esters and triglycerides derived from
internalized lipoproteins. Mutations in LIPA have been strongly linked with an elevated risk of CAD (13).

MATERIAL AND METHODS

Data Collection

In this study, we evaluated single-nucleotide polymorphisms (SNPs) reported in genome-wide association studies (GWAS) that are associated with
coronary artery disease (CAD). Four key genes involved in lipid metabolism were selected for detailed analysis. Protein sequences corresponding
to these genes were retrieved from the UniProt database. Mutation-related information, including allele variations, amino acid changes,
chromosomal locations, and global minor allele frequencies, was extracted from the NCBI database.

Prediction of the Damaging Impact of Reported nsSNPs

To evaluate the potential damaging effects of non-synonymous SNPs (nsSNPs) on protein structure and function, eleven in silico prediction tools
were employed. These tools were grouped into two categories: (i) predictors of functional impact (SIFT, PROVEAN, Mutation Assessor, CADD
(14), PolyPhen-2, and SNAP2), and (ii) predictors of pathogenicity (PhD-SNP and SuSPect). Additionally, consensus-based methods, such as
Meta-SNP, were included to enhance predictive reliability.

The selected tools represent four major computational approaches: sequence homology-based, supervised machine learning-based, protein
sequence/structure-based, and consensus-based prediction. Specifically, SIFT (15), PROVEAN, and Mutation Assessor (16) were used for
sequence homology-driven analysis of functional consequences. SNAP2, based on a neural network (17), and SuSPect, based on support vector
machines (18), provided machine learning predictions. PolyPhen-2, which integrates sequence, phylogenetic, and structural features, was included
due to its balanced sensitivity and specificity (19). Meta-SNP (20) was employed as a consensus approach that integrates outputs from PANTHER,
PhD-SNP, SIFT, and SNAP, thereby increasing overall confidence in predictions.

Structural Stability and Dynamic Flexibility Analysis of Missense Variants

[-Mutant 2.0: Protein stability changes induced by missense SNPs were predicted using the [-Mutant 2.0 web server. This tool employs a Support
Vector Machine (SVM)-based algorithm to estimate changes in Gibbs free energy (AAG). A positive AAG (>0 kcal/mol) indicates increased
stability, whereas a negative AAG (<0 kcal/mol) indicates decreased stability (21).

MUpro: MUpro, which uses SVMs and neural networks, was used to further assess protein stability. Scores below 0 suggest destabilization, while
scores above 0 indicate increased stability (22).

MEDUSA: Protein flexibility was predicted using the MEDUSA web server (23). The tool classifies amino acid residues into two, three, or five
flexibility classes based on their evolutionary and physicochemical properties. Input amino acid sequences in FASTA format were analyzed, and
flexibility classes were assigned accordingly.

Analysis of Evolutionary Conservation, Surface Accessibility, and PTMs

ConSurf: Conservation of amino acid residues was analyzed using the ConSurf server (24), which estimates evolutionary conservation based on
phylogenetic relationships among homologous sequences. This approach helps distinguish true conservation from limited evolutionary divergence.
NetSurf-2.0: Surface accessibility, solvent exposure, and structural disorder were predicted using NetSurf-2.0 (25). This neural network-based tool
processes primary protein sequences to predict solvent accessibility and secondary structure.

MusiteDeep: Post-translational modification (PTM) sites were predicted using MusiteDeep (26), a deep learning-based server capable of directly
analyzing raw protein sequences for multiple PTM types.
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Structural Impact Assessment of Mutations

DynaMut2: To evaluate the effect of nsSNPs on protein dynamics and flexibility, DynaMut2 was used (27). Wild-type protein structures (PDB
format) were compared against mutant models to predict alterations in stability and interactions.

mCSM: The destabilizing effects of mutations were further examined using mCSM (28), a machine learning-based method that incorporates
structural features to estimate changes in folding free energy (AAG), classifying mutations as stabilizing or destabilizing.

3D Modeling and Structural Analysis

Wild-type and mutant protein structures were modeled using SWISS-MODEL (29). The process involved template identification, alignment, model
building, and quality evaluation. Automatic mode employed BLAST for template selection. Generated models were validated using SAVES 6.0
(30). Structural comparison between wild-type and mutant proteins was performed using TM-align (31). TM-score was calculated to assess fold
similarity, while RMSD values provided insights into structural deviations, with higher RMSD values reflecting greater structural divergence.

Functional Protein Association Networks

Protein—protein interaction networks were constructed using the STRING database (32). STRING integrates ortholog clustering and diverse
interaction datasets to identify potential functional associations. In this study, STRING was employed to uncover CAD-related protein interactions
and provide biological insights into their disease relevance.

Gene—Drug Interaction Analysis

Drug—gene associations were explored using a drug—gene interaction database (33). This platform integrates therapeutic connection data to identify
pharmacological agents with potential targeting effects on CAD-associated genes, enabling candidate drug prioritization.
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Figure 2 Workflow of integrative in-silico analysis of CAD-associated nsSNPs
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Computational Docking Analysis of Protein—Protein Interactions

Protein—protein docking simulations were conducted using the ClusPro server (34). High-confidence interactors identified from STRING were
used as ligands, while CAD-associated proteins served as receptors. Protein structures were obtained from the PDB or modeled with SWISS-
MODEL. Docking simulations were performed using default ClusPro parameters, including free energy scoring and rotational sampling at 180°
intervals.

Protein—-Ligand Docking Analysis

Protein—ligand docking was conducted using SWISSdock (35). Ligands were retrieved from DrugBank in MOL2 format, while protein structures
were provided in PDB format. A protein—ligand complex was modeled to estimate binding affinity and interaction profiles. Post-docking analysis
was carried out using BIOVIA Discovery Studio to visualize binding conformations and interaction patterns.

RESULTS

A total of five nsSNPs across APOAS, PCSK9, LPL, and LIPA genes were prioritized for analysis based on their reported association with coronary
artery disease (CAD) (Table 1). These included APOAS (G185C), PCSK9 (R46L and R93C), LPL (N318S), and LIPA (T16P), each mapped to
distinct chromosomal positions with minor allele frequencies ranging from 0.0026 to 0.2861.

Pathogenicity predictions from multiple in silico tools provided consistent evidence of deleterious effects for most variants (Table 2). APOAS
G185C and LIPA T16P were strongly classified as disease-associated by SNPs&GO, PhD-SNP, and Meta-SNP, with corroborating evidence from
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PolyPhen-2 and PROVEAN. For PCSK9, both R46L and R93C were predicted deleterious, though R46L showed lower damaging scores in SIFT
and PANTHER. LPL N318S was largely classified as neutral, with mixed predictions across tools, suggesting possible context-dependent effects.
Protein stability assessments further supported the destabilizing nature of these variants (Table 3). APOAS5 G185C, PCSK9 R46L, and LIPA T16P
consistently showed negative AAG values in I-Mutant and MUpro, indicating reduced stability, while PCSK9 R93C displayed contradictory
outcomes—stability increase in I-Mutant but strong destabilization in MUpro—highlighting the importance of using multiple predictive models.
MEDUSA confirmed reduced structural flexibility for APOAS, PCSK9 R93C, LPL, and LIPA mutants, while PCSK9 R46L displayed a tendency
toward increased flexibility. Evolutionary conservation and solvent accessibility analyses demonstrated that these variants occur at functionally
relevant residues (Table 4). APOAS5 G185C, PCSK9 R46L, and LIPA T16P were solvent-exposed, while PCSK9 R93C was highly conserved and
exposed at 52%, suggesting functional disruption at critical sites. Disordered residue predictions revealed marked disorder for PCSK9 R46L (60%)
and LIPA T16P (100%), indicating destabilization of flexible regions. Importantly, no post-translational modification sites were predicted at these
positions, ruling out confounding effects.
Dynamic stability modeling using DynaMut2 (Table 5) confirmed destabilizing effects for all variants except LPL N318S, which exhibited a
stabilizing AAG of +0.42 kcal/mol. mCSM predictions (Table 6) aligned closely, with all variants classified as destabilizing, reinforcing the
consensus that these nsSNPs alter protein structural integrity.
Comparative structural modeling (Figure 3) revealed that mutant proteins displayed conformational deviations relative to wild-type. APOAS
G185C showed subtle alterations in g—y distributions; PCSK9 R46L and R93C introduced pronounced deviations in loop and helical regions; LPL
N318S introduced local distortions near the catalytic site; and LIPA T16P disrupted N-terminal secondary structure. Ramachandran plots
consistently confirmed increased outlier residues across mutants, reflecting compromised folding.
Protein—protein interaction (PPI) network analysis (Figure 4) provided further insights. APOAS interacted strongly with other apolipoproteins,
PCSKO9 with LDLR and HMGCR, LPL with GPIHBP1 and APOC2, and LIPA with cholesterol metabolism enzymes. Mutations in these genes are
therefore likely to propagate dysfunction through lipid regulation networks, amplifying CAD risk.
Molecular docking analysis demonstrated significant alterations in ligand binding (Table 7; Figure 5). Wild-type APOAS exhibited strong binding
with APOC3 (—1208.9 kcal/mol), which was slightly weakened in the G185C mutant. PCSK9 wild-type bound LDLR with a very strong affinity
(—1911.1 kcal/mol), but both R46L and R93C mutants displayed substantially reduced binding (—1633.9 and —1536.5 kcal/mol, respectively),
consistent with impaired receptor interaction. LPL N318S showed reduced binding affinity to GPIHBP1 compared to wild-type (—1396.3 vs.
—1432.8 kcal/mol). Similarly, LIPA T16P significantly weakened binding to SCGB1D2 (—1013.9 vs. —1343.1 kcal/mol). These altered binding
profiles support the hypothesis that nsSNPs disrupt key protein—ligand and protein—protein interactions essential for lipid metabolism.
Finally, drug—gene interaction analysis (Table 8) highlighted that several variants mapped to proteins targeted by established lipid-lowering drugs.
Rosuvastatin (APOAS), lomitapide mesylate (PCSK9), clofibrate (LPL), and lovastatin (LIPA) demonstrated varying interaction scores,
underscoring their therapeutic relevance in CAD.

Table 1. Detailed information of nsSNPs in selected CAD-associated genes

Gene rsID Chromosomal Position ~ Nucleotide Change (hg38) Amino Acid Change  Global Minor Allele Frequency  Reference
APOAS 152075291 chr11:116790676 NC_000011.10:2.116790676C>A  G185C A=0.0114 29263402
PCSK9 1511591147 chr1:55039974 NC_000001.11:2.55039974G>T R46L T =0.0064 29212778, 28714975
PCSK9  rs151193009  chrl:55043912 NC_000001.11:g.55043912C>T R93C T=0.0026 33020668
LPL 15268 chr8:19956018 NC_000008.11:2.19956018A>G N318S G =0.0052 36474045
LIPA rs1051338 chr10:89247603 NC_000010.11:2.89247603T>G T16P G =0.2861 36474045

Table 2. Predictions and scores of nsSNPs from bioinformatics tools

Gene rsID Amino SNPs&G PhD- PANTH SIFT PolyPhen = PROVEAN SuSPect SNAP Mutation CA Meta-
Acid O (Score) SNP ER -2 (Cutoff -2.5) 2 Assessor DD SNP
Change (Score)
APOA rs2075291 G185C Disease Disease Probably  Affects Probably Deleterious (- Neutral Effect Medium Like  Neutra
5 (0.594) 4) benign function damaging 3.444) polymorph (0.650)  (0.685) ly 1
(0.19) (0.03) (0.997) ism (25) beni  (0.468)
en
(19)
PCSK rs11591147  R46L Disease Disease Probably  Tolerate Benign Neutral (- Neutral Neutra ~ Low Like  Diseas
9 (0.649) 2) benign d(0.10) (0.001) 0.236) polymorph 1 (0.202) ly e
(0.02) ism (17) (0.485) beni  (0.506)
gn
0.0
28)
PCSK rs15119300 R93C Disease Disease Probably ~ Tolerate Probably Deleterious (- Neutral Effect Medium Like  Diseas
9 9 (0.721) (0) benign d (0.06) damaging 3.172) polymorph (0.540)  (0.788) ly e
(0.02) (1.000) ism (31) beni  (0.519)
gn
4
LPL rs268 N318S Neutral Neutral Probably ~ Tolerate Benign Neutral (- Neutral Neutra Low Like  Neutra
(0.235) ?2) damagin d (0.52) (0.143) 1.085) polymorph 1 (0.408) ly 1
2(0.57) ism (21) (0.390) beni  (0.430)
gn
@
LIPA rs1051338 T16P Disease Disease Probably  Tolerate Benign Neutral (- Neutral Effect Neutral Like  Diseas
(0.763) (0) benign d(0.14) (0.002) 1.212) polymorph  (0.550)  (0.065) ly e
(0.27) ism (16) beni  (0.736)
gn
an
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Gene rsID Amino I-Mutant I-Mutant MUpro AAG MUpro MEDUSA MEDUSA C-
Acid AAG Prediction (kcal/mol) Prediction Flexibility Probability (%) score
Change (kcal/mol)
APOA5 152075291 G185C -0.69 Decrease stability  -0.676 Decrease Rigid 45 <0.5
stability
PCSK9 1511591147 R46L -0.33 Decrease stability — -0.382 Decrease Flexible 49 <0.5
stability
PCSK9 15151193009 R93C +0.71 Increase stability ~ -0.812 Decrease Rigid 40 <0.5
stability
LPL 1rs268 N318S -0.63 Decrease stability  -1.103 Decrease Rigid 44 <0.5
stability
LIPA rs1051338 T16P -0.52 Decrease stability  -1.136 Decrease Rigid 56 <0.5
stability
Table 4. Conservation, solvent accessibility, and post-translational modification (PTM) analysis of selected nsSNPs
Gene rsID Amino Acid ConSurf Score Relative Surface Accessibility Disordered Residues PTM Prediction
Change (Conservation) (%) (%) (MusiteDeep)
APOAS 152075291 G185C Variable (3) 34 (Exposed) 0 No PTM predicted
PCSK9 511591147 R46L Variable (3) 46 (Exposed) 60 No PTM predicted
PCSK9  rs151193009  R93C Conserved (7) 52 (Exposed) 0 No PTM predicted
LPL 1268 N318S Average (5) 45 (Exposed) 1 No PTM predicted
LIPA rs1051338 T16P Variable (2) 84 (Exposed) 100 No PTM predicted
Table 5. Predicted stability changes of nsSNPs using DynaMut2
Gene rsID Amino Acid Change AAG Stability (kcal/mol) Prediction
APOAS 152075291 G185C -0.39 Destabilizing
PCSK9 rs11591147 R46L -0.23 Destabilizing
PCSK9 rs151193009 R93C -0.31 Destabilizing
LPL 1268 N318S +0.42 Stabilizing
LIPA rs1051338 T16P -0.02 Destabilizing
Table 6. Predicted alterations in protein stability upon nsSNPs using mCSM
Gene rsID Amino Acid Change AAG (kcal/mol) Stability Prediction Structural Representation
APOAS 152075291 G185C +0.39 Destabilizing
Y185
]
PCSK9 rs11591147 R46L +0.23 Destabilizing
PCSK9 13151193009  R93C +0.23 Destabilizing f
m "
LPL 268 N318S +0.31 Destabilizi
IS estabilizing ' m‘/
R318
SN318.
LIPA rs1051338 T16P +0.02 Destabilizing

A0S
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Table 7. Molecular docking analysis of wild-type and mutant CAD-associated proteins with their interacting ligands

Protein Ligand Binding Energy Key Interacting Residues

Variant (kcal/mol)

APOAS APOC3 -1208.9 LEU14, PHE18, ARG24, HIS45, GLU138, GLN145, GLN148, GLU149, TYR194, ARG204, ARG211,

(WT) ARG282, GLN286

APOAS APOC3 -1205.2 LEU14, ARG24, HIS45, GLU138, GLN145, GLN148, GLU149, TYR194, ARG204, ARG211, ARG282,

(G185C) GLN286

PCSK9 LDLR -1911.1 SER6, ARG7, ARGS, SER9, TRP10, TRP11, PRO12, LEU17, LEU18, LEU19, ALA26, GLY27, ASP37,

(WT) SER47, GLU48, GLU49, ARG46, VAL42, GLU40, HIS87, GLN90, ARG93, ARG96, ARG97, ARG104,
TYR293, ARG306, ARG476, GLU567

PCSK9 LDLR -1633.9 PHEG64, HIS65, ARG66, HIS87, SER89, GLU92, ARG104, LYS136, THR214, ARG215, HIS217, ASP238,

(R46L) ARG272, TYR293, ARG306, GLU332, ARG357, ASP374, THR377, CYS378, ARG476

PCSK9 LDLR -1536.5 LEU17, ALA26, SER46, HIS66, ARG68, HIS87, SER90, SER93, HIS217, TYR293, ARG306, THR377,

(R93C) ASP374, ARG476, GLU566

LPL (WT) GPIHBP1  -1432.8 ARG290, SER292, LEU303, SER304, ARG306, LYS307, ARG309, LYS327, LYS346, HIS348, GLY351,
SER354, THR385, ASN386, TRP420, ARG432, LYS434

LPL GPIHBP1  -1396.3 ARG219, ARG290, SER292, LEU303, SER304, ARG306, LYS307, ARG309, ARG324, LYS327, LYS346,

(N318S) GLY351, THR352, SER354, THR385, ASN386, TRP420, ARG432, LYS434

LIPA(WT) SCGBID2 -1343.1 THR27, HIS250, ARG270, SER275, HIS344, LEU381

LIPA SCGBID2  -1013.9 THR27, HIS250, ARG270, SER275, HIS344, LEU381

(T16P)

Table 8. Predicted drug—gene interactions of CAD-associated variants with approved antihypercholesterolemic agents

Gene Drug Indication Interaction Score DrugBank ID
APOAS Rosuvastatin Antihypercholesterolemic agent 0.87 DB01098
PCSK9 Lomitapide Mesylate Antihypercholesterolemic agent 0.80 DB08827
LPL Clofibrate Anticholesteremic agent 0.11 DB00636
LIPA Lovastatin Antihypercholesterolemic agent 0.44 DB00227

LA Thld Y elow)

Mautact Q3185 (Greea)

Figure 3 Comparative structural modeling and Ramachandran plot validation of wild-type and mutant CAD-associated proteins.

This figure presents the modeled three-dimensional (3D) structures of coronary artery disease (CAD)—associated proteins in both wild-type and
mutant forms, alongside their respective Ramachandran plots for conformational validation. In panel A, APOAS wild-type (yellow) and mutant
G185C (green) are shown, with the Ramachandran plots highlighting subtle deviations in —y angle distribution that reflect destabilizing effects
introduced by the mutation. Panel B displays PCSK9 wild-type (yellow) and mutants R46L (green) and R93C (blue), where conformational
differences are evident in loop and helical regions, and Ramachandran plots reveal altered residue distributions in disallowed regions, consistent
with reduced stability. Panel C illustrates LPL wild-type (yellow) and mutant N318S (green), where structural superimposition reveals local
distortions near the catalytic domain, supported by Ramachandran plots showing increased outlier residues indicative of impaired folding. Panel
D shows LIPA wild-type (yellow) and mutant T16P (green), where the mutation introduces perturbations in the N-terminal secondary structure,
with Ramachandran plots confirming significant deviations in residue orientation that reduce stability and flexibility. Collectively, these
comparative modeling and validation analyses confirm that CAD-related nsSNPs (APOAS G185C, PCSK9 R46L and R93C, LPL N318S, and
LIPA T16P) introduce destabilizing conformational changes that may compromise structural integrity and functional activity of the proteins.

Figure 4 Figure X. Protein—protein interaction (PPI) networks of CAD-associated genes predicted by STRING.

The interaction maps illustrate the functional associations of (A) APOAS, (B) PCSKO9, (C) LPL, and (D) LIPA with their respective interacting
partners. Each node represents a protein, and edges indicate predicted interactions supported by experimental data, co-expression, text mining, and
curated databases. APOAS showed extensive connectivity with other apolipoproteins (APOA1, APOC1, APOC2, APOC3, APOB), highlighting
its central role in lipid transport and metabolism. PCSK9 was strongly linked with LDLR, APOB, and HMGCR, reflecting its involvement in
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cholesterol regulation. LPL demonstrated multiple connections with GPIHBP1, APOC2, and APOE, consistent with its role in triglyceride
hydrolysis and lipid clearance. LIPA clustered with cholesterol metabolism proteins (CYP27A1, CYP46A1, DHCR24), confirming its role in
lysosomal lipid degradation. Overall, these networks emphasize that mutations in CAD-associated genes may disrupt critical lipid regulatory
pathways through altered protein—protein interactions, contributing to disease susceptibility.
| Docking Pose (A) | | Ligand Structure (B) | | Interaction Map (C) |

This  figure presents the
molecular docking analysis of
wild-type and mutant CAD-
associated proteins with their
respective ligands, arranged in
structured multilayered panels.
Each row corresponds to a
specific protein—ligand
interaction, with three aligned
components: Panel A (Docking
Pose) shows the 3D
representation of the ligand
bound within the active site of
the  protein, highlighting
conformational fit and spatial
orientation, Panel B (Ligand
Structure) depicts the 2D
chemical structure of the
corresponding  ligand  for
clarity; and Panel C (Interaction
Map) provides detailed residue-
level visualization of non-
covalent interactions, including
hydrogen bonds, hydrophobic
contacts, m—m stacking, and
electrostatic interactions.
Together, these panels illustrate
how nsSNP-induced structural
changes influence docking
stability and binding
conformations. Specifically,
APOAS with Rosuvastatin,
PCSK9  with  Lomitapide
Mesylate, LPL with Clofibrate,
and LIPA with Lovastatin show
variations in binding affinities
and interacting residues
between wild-type and mutant
proteins,  reflecting  altered
drug—target interactions. This
integrated depiction
underscores the mechanistic
impact of CAD-related
mutations on protein—ligand
dynamics, offering insights into
therapeutic ~ potential  and
druggability of the studied
variants.

Figure 5 Comparative docking analysis of wild-type and mutant CAD-associated proteins with therapeutic ligands.

DISCUSSION

Single nucleotide polymorphisms (SNPs) are the most prevalent form of genetic variation, occurring across both coding and non-coding regions
of the human genome. Among these, non-synonymous SNPs (nsSNPs) are of particular clinical relevance, as they result in amino acid substitutions
that can disrupt protein stability, folding, and intermolecular interactions. Such structural perturbations can compromise essential biological
processes and contribute to the etiology of complex diseases, including coronary artery disease (CAD) (1-3). The characterization of nsSNPs in
CAD-related genes is therefore critical for advancing biomarker discovery and therapeutic development.
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In this study, we applied a multi-layered in-silico framework to systematically evaluate five nsSNPs within four CAD-associated genes—APOAS,
PCSK9, LPL, and LIPA. To overcome the inherent limitations of single predictors, we incorporated a range of computational approaches spanning
evolutionary conservation—based tools (SIFT, PROVEAN, Mutation Assessor) (14—16), machine learning—based classifiers (PolyPhen-2, SNAP2,
SuSPect) (17-19), and consensus methods such as Meta-SNP (20). Despite methodological variability, APOAS G185C, PCSK9 R46L and R93C,
and LIPA T16P were consistently predicted as deleterious, while LPL N318S exhibited a mixed profile, being largely neutral in some algorithms
but pathogenic in others. This highlights the value of integrative predictions in distinguishing high-confidence risk variants from background
polymorphisms.
Structural and stability analyses further reinforced these findings. Solvent accessibility assessments revealed that most variants occurred at surface-
exposed residues, predisposing them to disrupt ligand recognition or protein—protein interactions (25,26). Stability prediction tools, including I-
Mutant, MUpro, mCSM, and DynaMut2, demonstrated predominantly negative AAG values (21,22,27,28), confirming destabilizing effects. Such
decreases in thermodynamic stability are hallmarks of disease-associated mutations and may impair proper protein folding, leading to functional
insufficiency. Interestingly, LPL N318S displayed a stabilizing effect in DynaMut2, suggesting a context-dependent mechanism that warrants
further biochemical validation.
At the systems level, protein—protein interaction (PPI) mapping revealed that these variants perturb key regulatory hubs involved in lipid transport
and cholesterol metabolism. For example, APOAS clustered with multiple apolipoproteins, PCSK9 maintained critical associations with LDLR
and HMGCR, and LIPA was linked to cholesterol degradation enzymes (32). Disruption of such densely interconnected networks may impair
lipoprotein clearance, accelerate atherosclerosis, and promote CAD progression.
Molecular docking analyses provided further mechanistic insights. Mutations in PCSK9 substantially weakened its binding affinity with LDLR,
consistent with its known role in cholesterol regulation (10,11). Similarly, LPL N318S and LIPA T16P displayed reduced interaction energies with
GPIHBP1 and SCGB1D2, respectively, supporting their potential pathogenicity in lipid metabolism (9,13). APOAS G185C maintained near-native
binding energies but altered specific residue interactions with APOC3, suggesting subtle functional consequences. These results collectively
indicate that nsSNP-induced perturbations compromise not only structural stability but also intermolecular communication, thereby amplifying
their pathogenic impact.
Taken together, the findings emphasize the utility of integrated computational pipelines in dissecting the molecular consequences of nsSNPs. By
combining sequence-based prediction, conservation analysis, structural modeling, stability assessments, PPI network mapping, and molecular
docking, this study provides a robust framework for prioritizing variants with the greatest likelihood of functional impact in CAD.

CONCLUSION

This study comprehensively evaluated five nsSNPs across four CAD-associated genes—APOAS, PCSK9, LPL, and LIPA—using an integrative
in-silico strategy. Pathogenicity predictors consistently identified APOAS G185C, PCSK9 R46L and R93C, and LIPA T16P as deleterious (14—
20), while structural and stability models revealed destabilizing conformational changes in most variants (21,22,27,28). Protein—protein interaction
analysis demonstrated that these genes act as central regulators in lipid metabolic pathways (32), and molecular docking confirmed reduced binding
affinities and altered interaction profiles with physiological partners (9—13,34,35).

The strength of this work lies in its multi-dimensional approach, which bridges molecular predictions with network-level consequences, thereby
generating a comprehensive molecular portrait of CAD-related genetic variants. Such in-silico frameworks are valuable for identifying high-risk
mutations, informing drug—gene interactions, and guiding experimental priorities.

Nevertheless, computational predictions remain probabilistic and require validation. Future studies should integrate biochemical assays, cell-based
functional models, and patient-derived data to confirm the pathogenicity of these variants and to explore their potential as diagnostic markers or
therapeutic targets. Ultimately, the synergy of computational and experimental approaches will be essential for advancing precision medicine
strategies in coronary artery disease.
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