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 ABSTRACT 

 Background: Coronary artery disease (CAD) is strongly influenced by genetic factors, particularly 

non-synonymous single nucleotide polymorphisms (nsSNPs) that alter protein structure and 

function. Variants within lipid metabolism–related genes such as APOA5, PCSK9, LPL, and LIPA 

are implicated in atherosclerosis progression, yet their molecular consequences remain 

incompletely defined. Objective: This study aimed to comprehensively characterize the structural 

and functional impact of selected CAD-associated nsSNPs using an integrative computational 

approach. Methods: Reported nsSNPs from the GWAS catalog were retrieved, and detailed variant 

data were obtained from UniProt and NCBI. Functional impacts were predicted using sequence 

homology–based (SIFT, PROVEAN, Mutation Assessor), machine learning–based (SNAP2, 

SuSPect, PolyPhen-2), and consensus predictors (Meta-SNP). Structural stability was assessed by 

I-Mutant, MUpro, mCSM, and DynaMut2, while evolutionary conservation, surface accessibility, 

and post-translational modifications were analyzed with ConSurf, NetSurf-2.0, and MusiteDeep. 

Protein–protein interactions were mapped via STRING, and molecular docking was performed 

using ClusPro and SwissDock. Results: APOA5 G185C, PCSK9 R46L and R93C, LPL N318S, and 

LIPA T16P were consistently predicted to be deleterious, with most variants exhibiting negative ΔΔG 

values indicative of destabilization. Docking analysis revealed reduced binding affinities and altered 

interaction residues, suggesting disruption of lipid regulatory pathways. Conclusion: This 

integrative in-silico analysis highlights critical CAD-related nsSNPs that destabilize protein 

structure and impair molecular interactions, underscoring their potential as biomarkers and 

therapeutic targets. 

 Keywords 

 Coronary artery disease, nsSNPs, APOA5, PCSK9, LPL, LIPA, protein stability, molecular docking, 

bioinformatics 

INTRODUCTION 

Coronary artery disease (CAD), also referred to as ischemic heart disease (IHD) or coronary heart disease (CHD), remains a leading cause of 

mortality in industrialized nations. Despite significant advancements in both prevention and treatment (1), CAD continues to pose a major global 

health challenge, accounting for more than 3.9 million deaths in Europe and 1.8 million in the European Union annually. In the United States, 

more than 18.2 million individuals are affected, with approximately 805,000 developing acute coronary syndrome (ACS) each year (2). By 2030, 

the global mortality associated with CHD is projected to reach nearly 9.245 million, highlighting the increasing global burden reported by the 

World Health Organization (3). 

The underlying cause of CAD is primarily the buildup of atherosclerotic plaques in the epicardial coronary arteries, which restricts blood flow (4). 

Although the precise pathological and physiological mechanisms remain incompletely understood, both genetic and environmental factors play 

critical roles in disease progression. Established risk factors include advanced age, dyslipidemia, obesity, hypertension, diabetes mellitus, tobacco 

use, alcohol consumption, and unhealthy lifestyle practices. Genome-wide association studies (GWAS) have identified over 230 genetic variants 

significantly associated with CAD (5). Importantly, research suggests that the pathophysiology of CAD extends beyond epicardial atherosclerotic 

plaques, with coronary microcirculation also playing a pivotal role in disease manifestation (6). 

CAD presents with a wide clinical spectrum, ranging from asymptomatic subclinical atherosclerosis to severe outcomes such as angina pectoris, 

acute myocardial infarction (MI), and sudden cardiac death (SCD) (7). This broad phenotypic variability results from complex interactions between 

genetic mutations and environmental exposures, including dietary patterns, physical activity, tobacco use, and comorbidities (8). Among the genes 

implicated in lipoprotein metabolism, APOA5, PCSK9, LPL, and LIPA are of particular importance. Since lipoprotein metabolism is central to 

atherosclerotic plaque formation, mutations in these genes are strongly linked with CAD. 

The lipoprotein lipase (LPL) gene, located on chromosome 8p21.3, encodes an enzyme critical for lipid metabolism by mediating the hydrolysis 

of very low-density lipoproteins (VLDL) into low-density lipoproteins (LDL-C). Mutations in LPL are associated with lipoprotein lipase 

deficiency, a rare autosomal recessive disorder characterized by markedly elevated triglyceride levels, lactescent serum, reduced concentrations of 
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HDL-C and LDL-C, and clinical features such as eruptive xanthomas, abdominal pain, hepatosplenomegaly, and, in some cases, early-onset 

atherosclerotic CAD (9). 

The proprotein convertase subtilisin/kexin type 9 (PCSK9) gene, located on chromosome 1p32.3, encodes a protease that downregulates LDL 

receptor (LDLR) expression in both hepatic and extrahepatic tissues (10). Mutations in PCSK9 reduce LDL receptor density, leading to elevated 

plasma total cholesterol and LDL-C levels. Clinically, such alterations are associated with tendon xanthomas, premature CAD, myocardial 

infarction, and ischemic stroke (11). 

 

Figure 1 Schematic Representation of CAD-Associated Gene Variants 

The APOA5 gene encodes apolipoprotein A-V (apoA-V), a key regulator of plasma triglyceride concentrations. Genetic variants in APOA5 have 

been consistently associated with altered lipid metabolism and an increased risk of CAD (12). 

The LIPA gene encodes lysosomal acid lipase (LAL), an enzyme essential for hydrolyzing cholesterol esters and triglycerides derived from 

internalized lipoproteins. Mutations in LIPA have been strongly linked with an elevated risk of CAD (13). 

MATERIAL AND METHODS 

Data Collection 

In this study, we evaluated single-nucleotide polymorphisms (SNPs) reported in genome-wide association studies (GWAS) that are associated with 

coronary artery disease (CAD). Four key genes involved in lipid metabolism were selected for detailed analysis. Protein sequences corresponding 

to these genes were retrieved from the UniProt database. Mutation-related information, including allele variations, amino acid changes, 

chromosomal locations, and global minor allele frequencies, was extracted from the NCBI database. 

Prediction of the Damaging Impact of Reported nsSNPs 

To evaluate the potential damaging effects of non-synonymous SNPs (nsSNPs) on protein structure and function, eleven in silico prediction tools 

were employed. These tools were grouped into two categories: (i) predictors of functional impact (SIFT, PROVEAN, Mutation Assessor, CADD 

(14), PolyPhen-2, and SNAP2), and (ii) predictors of pathogenicity (PhD-SNP and SuSPect). Additionally, consensus-based methods, such as 

Meta-SNP, were included to enhance predictive reliability. 

The selected tools represent four major computational approaches: sequence homology-based, supervised machine learning-based, protein 

sequence/structure-based, and consensus-based prediction. Specifically, SIFT (15), PROVEAN, and Mutation Assessor (16) were used for 

sequence homology-driven analysis of functional consequences. SNAP2, based on a neural network (17), and SuSPect, based on support vector 

machines (18), provided machine learning predictions. PolyPhen-2, which integrates sequence, phylogenetic, and structural features, was included 

due to its balanced sensitivity and specificity (19). Meta-SNP (20) was employed as a consensus approach that integrates outputs from PANTHER, 

PhD-SNP, SIFT, and SNAP, thereby increasing overall confidence in predictions. 

Structural Stability and Dynamic Flexibility Analysis of Missense Variants 

I-Mutant 2.0: Protein stability changes induced by missense SNPs were predicted using the I-Mutant 2.0 web server. This tool employs a Support 

Vector Machine (SVM)-based algorithm to estimate changes in Gibbs free energy (ΔΔG). A positive ΔΔG (>0 kcal/mol) indicates increased 

stability, whereas a negative ΔΔG (<0 kcal/mol) indicates decreased stability (21). 

MUpro: MUpro, which uses SVMs and neural networks, was used to further assess protein stability. Scores below 0 suggest destabilization, while 

scores above 0 indicate increased stability (22). 

MEDUSA: Protein flexibility was predicted using the MEDUSA web server (23). The tool classifies amino acid residues into two, three, or five 

flexibility classes based on their evolutionary and physicochemical properties. Input amino acid sequences in FASTA format were analyzed, and 

flexibility classes were assigned accordingly. 

Analysis of Evolutionary Conservation, Surface Accessibility, and PTMs 

ConSurf: Conservation of amino acid residues was analyzed using the ConSurf server (24), which estimates evolutionary conservation based on 

phylogenetic relationships among homologous sequences. This approach helps distinguish true conservation from limited evolutionary divergence. 

NetSurf-2.0: Surface accessibility, solvent exposure, and structural disorder were predicted using NetSurf-2.0 (25). This neural network-based tool 

processes primary protein sequences to predict solvent accessibility and secondary structure. 

MusiteDeep: Post-translational modification (PTM) sites were predicted using MusiteDeep (26), a deep learning-based server capable of directly 

analyzing raw protein sequences for multiple PTM types. 
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Structural Impact Assessment of Mutations 

DynaMut2: To evaluate the effect of nsSNPs on protein dynamics and flexibility, DynaMut2 was used (27). Wild-type protein structures (PDB 

format) were compared against mutant models to predict alterations in stability and interactions. 

mCSM: The destabilizing effects of mutations were further examined using mCSM (28), a machine learning-based method that incorporates 

structural features to estimate changes in folding free energy (ΔΔG), classifying mutations as stabilizing or destabilizing. 

3D Modeling and Structural Analysis 

Wild-type and mutant protein structures were modeled using SWISS-MODEL (29). The process involved template identification, alignment, model 

building, and quality evaluation. Automatic mode employed BLAST for template selection. Generated models were validated using SAVES 6.0 

(30). Structural comparison between wild-type and mutant proteins was performed using TM-align (31). TM-score was calculated to assess fold 

similarity, while RMSD values provided insights into structural deviations, with higher RMSD values reflecting greater structural divergence. 

Functional Protein Association Networks 

Protein–protein interaction networks were constructed using the STRING database (32). STRING integrates ortholog clustering and diverse 

interaction datasets to identify potential functional associations. In this study, STRING was employed to uncover CAD-related protein interactions 

and provide biological insights into their disease relevance. 

Gene–Drug Interaction Analysis 

Drug–gene associations were explored using a drug–gene interaction database (33). This platform integrates therapeutic connection data to identify 

pharmacological agents with potential targeting effects on CAD-associated genes, enabling candidate drug prioritization. 

 

Figure 2 Workflow of integrative in-silico analysis of CAD-associated nsSNPs 

Computational Docking Analysis of Protein–Protein Interactions 

Protein–protein docking simulations were conducted using the ClusPro server (34). High-confidence interactors identified from STRING were 

used as ligands, while CAD-associated proteins served as receptors. Protein structures were obtained from the PDB or modeled with SWISS-

MODEL. Docking simulations were performed using default ClusPro parameters, including free energy scoring and rotational sampling at 180° 

intervals. 

Protein–Ligand Docking Analysis 

Protein–ligand docking was conducted using SWISSdock (35). Ligands were retrieved from DrugBank in MOL2 format, while protein structures 

were provided in PDB format. A protein–ligand complex was modeled to estimate binding affinity and interaction profiles. Post-docking analysis 

was carried out using BIOVIA Discovery Studio to visualize binding conformations and interaction patterns. 

RESULTS 

A total of five nsSNPs across APOA5, PCSK9, LPL, and LIPA genes were prioritized for analysis based on their reported association with coronary 

artery disease (CAD) (Table 1). These included APOA5 (G185C), PCSK9 (R46L and R93C), LPL (N318S), and LIPA (T16P), each mapped to 

distinct chromosomal positions with minor allele frequencies ranging from 0.0026 to 0.2861. 

Pathogenicity predictions from multiple in silico tools provided consistent evidence of deleterious effects for most variants (Table 2). APOA5 

G185C and LIPA T16P were strongly classified as disease-associated by SNPs&GO, PhD-SNP, and Meta-SNP, with corroborating evidence from 

https://jhwcr.com/index.php/jhwcr/index
https://creativecommons.org/licenses/by/4.0/deed.en
https://lmi.education/
https://jhwcr.com/index.php/jhwcr/index


  
  

Hadi et al. https://doi.org/10.61919/vs9p0806 
  

 

 
JHWCR • Vol. 3 (12) September 2025 • CC BY 4.0 • Open Access • lmi.education 

 
 

PolyPhen-2 and PROVEAN. For PCSK9, both R46L and R93C were predicted deleterious, though R46L showed lower damaging scores in SIFT 

and PANTHER. LPL N318S was largely classified as neutral, with mixed predictions across tools, suggesting possible context-dependent effects. 

Protein stability assessments further supported the destabilizing nature of these variants (Table 3). APOA5 G185C, PCSK9 R46L, and LIPA T16P 

consistently showed negative ΔΔG values in I-Mutant and MUpro, indicating reduced stability, while PCSK9 R93C displayed contradictory 

outcomes—stability increase in I-Mutant but strong destabilization in MUpro—highlighting the importance of using multiple predictive models. 

MEDUSA confirmed reduced structural flexibility for APOA5, PCSK9 R93C, LPL, and LIPA mutants, while PCSK9 R46L displayed a tendency 

toward increased flexibility. Evolutionary conservation and solvent accessibility analyses demonstrated that these variants occur at functionally 

relevant residues (Table 4). APOA5 G185C, PCSK9 R46L, and LIPA T16P were solvent-exposed, while PCSK9 R93C was highly conserved and 

exposed at 52%, suggesting functional disruption at critical sites. Disordered residue predictions revealed marked disorder for PCSK9 R46L (60%) 

and LIPA T16P (100%), indicating destabilization of flexible regions. Importantly, no post-translational modification sites were predicted at these 

positions, ruling out confounding effects. 

Dynamic stability modeling using DynaMut2 (Table 5) confirmed destabilizing effects for all variants except LPL N318S, which exhibited a 

stabilizing ΔΔG of +0.42 kcal/mol. mCSM predictions (Table 6) aligned closely, with all variants classified as destabilizing, reinforcing the 

consensus that these nsSNPs alter protein structural integrity. 

Comparative structural modeling (Figure 3) revealed that mutant proteins displayed conformational deviations relative to wild-type. APOA5 

G185C showed subtle alterations in φ–ψ distributions; PCSK9 R46L and R93C introduced pronounced deviations in loop and helical regions; LPL 

N318S introduced local distortions near the catalytic site; and LIPA T16P disrupted N-terminal secondary structure. Ramachandran plots 

consistently confirmed increased outlier residues across mutants, reflecting compromised folding. 

Protein–protein interaction (PPI) network analysis (Figure 4) provided further insights. APOA5 interacted strongly with other apolipoproteins, 

PCSK9 with LDLR and HMGCR, LPL with GPIHBP1 and APOC2, and LIPA with cholesterol metabolism enzymes. Mutations in these genes are 

therefore likely to propagate dysfunction through lipid regulation networks, amplifying CAD risk. 

Molecular docking analysis demonstrated significant alterations in ligand binding (Table 7; Figure 5). Wild-type APOA5 exhibited strong binding 

with APOC3 (−1208.9 kcal/mol), which was slightly weakened in the G185C mutant. PCSK9 wild-type bound LDLR with a very strong affinity 

(−1911.1 kcal/mol), but both R46L and R93C mutants displayed substantially reduced binding (−1633.9 and −1536.5 kcal/mol, respectively), 

consistent with impaired receptor interaction. LPL N318S showed reduced binding affinity to GPIHBP1 compared to wild-type (−1396.3 vs. 

−1432.8 kcal/mol). Similarly, LIPA T16P significantly weakened binding to SCGB1D2 (−1013.9 vs. −1343.1 kcal/mol). These altered binding 

profiles support the hypothesis that nsSNPs disrupt key protein–ligand and protein–protein interactions essential for lipid metabolism. 

Finally, drug–gene interaction analysis (Table 8) highlighted that several variants mapped to proteins targeted by established lipid-lowering drugs. 

Rosuvastatin (APOA5), lomitapide mesylate (PCSK9), clofibrate (LPL), and lovastatin (LIPA) demonstrated varying interaction scores, 

underscoring their therapeutic relevance in CAD. 

Table 1. Detailed information of nsSNPs in selected CAD-associated genes 

Gene rsID Chromosomal Position Nucleotide Change (hg38) Amino Acid Change Global Minor Allele Frequency Reference 

APOA5 rs2075291 chr11:116790676 NC_000011.10:g.116790676C>A G185C A = 0.0114 29263402 

PCSK9 rs11591147 chr1:55039974 NC_000001.11:g.55039974G>T R46L T = 0.0064 29212778, 28714975 

PCSK9 rs151193009 chr1:55043912 NC_000001.11:g.55043912C>T R93C T = 0.0026 33020668 

LPL rs268 chr8:19956018 NC_000008.11:g.19956018A>G N318S G = 0.0052 36474045 

LIPA rs1051338 chr10:89247603 NC_000010.11:g.89247603T>G T16P G = 0.2861 36474045 

Table 2. Predictions and scores of nsSNPs from bioinformatics tools 

Gene rsID Amino 

Acid 

Change 

SNPs&G

O (Score) 

PhD-

SNP 

(Score) 

PANTH

ER 

SIFT PolyPhen

-2 

PROVEAN 

(Cutoff -2.5) 

SuSPect SNAP

2 

Mutation 

Assessor 

CA

DD 

Meta-

SNP 

APOA

5 

rs2075291 G185C Disease 

(0.594) 

Disease 

(4) 

Probably 

benign 

(0.19) 

Affects 

function 

(0.03) 

Probably 

damaging 

(0.997) 

Deleterious (-

3.444) 

Neutral 

polymorph

ism (25) 

Effect 

(0.650) 

Medium 

(0.685) 

Like

ly 

beni

gn 

(19) 

Neutra

l 

(0.468) 

PCSK

9 

rs11591147 R46L Disease 

(0.649) 

Disease 

(2) 

Probably 

benign 

(0.02) 

Tolerate

d (0.10) 

Benign 

(0.001) 

Neutral (-

0.236) 

Neutral 

polymorph

ism (17) 

Neutra

l 

(0.485) 

Low 

(0.202) 

Like

ly 

beni

gn 

(0.0

28) 

Diseas

e 

(0.506) 

PCSK

9 

rs15119300

9 

R93C Disease 

(0.721) 

Disease 

(0) 

Probably 

benign 

(0.02) 

Tolerate

d (0.06) 

Probably 

damaging 

(1.000) 

Deleterious (-

3.172) 

Neutral 

polymorph

ism (31) 

Effect 

(0.540) 

Medium 

(0.788) 

Like

ly 

beni

gn 

(24) 

Diseas

e 

(0.519) 

LPL rs268 N318S Neutral 

(0.235) 

Neutral 

(2) 

Probably 

damagin

g (0.57) 

Tolerate

d (0.52) 

Benign 

(0.143) 

Neutral (-

1.085) 

Neutral 

polymorph

ism (21) 

Neutra

l 

(0.390) 

Low 

(0.408) 

Like

ly 

beni

gn 

(21) 

Neutra

l 

(0.430) 

LIPA rs1051338 T16P Disease 

(0.763) 

Disease 

(0) 

Probably 

benign 

(0.27) 

Tolerate

d (0.14) 

Benign 

(0.002) 

Neutral (-

1.212) 

Neutral 

polymorph

ism (16) 

Effect 

(0.550) 

Neutral 

(0.065) 

Like

ly 

beni

gn 

(11) 

Diseas

e 

(0.736) 
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Table 3. Stability and flexibility prediction of nsSNPs using I-Mutant2.0, MUpro, and MEDUSA 

Gene rsID Amino 

Acid 

Change 

I-Mutant 

ΔΔG 

(kcal/mol) 

I-Mutant 

Prediction 

MUpro ΔΔG 

(kcal/mol) 

MUpro 

Prediction 

MEDUSA 

Flexibility 

MEDUSA 

Probability (%) 

C-

score 

APOA5 rs2075291 G185C -0.69 Decrease stability -0.676 Decrease 

stability 

Rigid 45 <0.5 

PCSK9 rs11591147 R46L -0.33 Decrease stability -0.382 Decrease 

stability 

Flexible 49 <0.5 

PCSK9 rs151193009 R93C +0.71 Increase stability -0.812 Decrease 

stability 

Rigid 40 <0.5 

LPL rs268 N318S -0.63 Decrease stability -1.103 Decrease 

stability 

Rigid 44 <0.5 

LIPA rs1051338 T16P -0.52 Decrease stability -1.136 Decrease 

stability 

Rigid 56 <0.5 

Table 4. Conservation, solvent accessibility, and post-translational modification (PTM) analysis of selected nsSNPs 

Gene rsID Amino Acid 

Change 

ConSurf Score 

(Conservation) 

Relative Surface Accessibility 

(%) 

Disordered Residues 

(%) 

PTM Prediction 

(MusiteDeep) 

APOA5 rs2075291 G185C Variable (3) 34 (Exposed) 0 No PTM predicted 

PCSK9 rs11591147 R46L Variable (3) 46 (Exposed) 60 No PTM predicted 

PCSK9 rs151193009 R93C Conserved (7) 52 (Exposed) 0 No PTM predicted 

LPL rs268 N318S Average (5) 45 (Exposed) 1 No PTM predicted 

LIPA rs1051338 T16P Variable (2) 84 (Exposed) 100 No PTM predicted 

Table 5. Predicted stability changes of nsSNPs using DynaMut2 

Gene rsID Amino Acid Change ΔΔG Stability (kcal/mol) Prediction 

APOA5 rs2075291 G185C -0.39 Destabilizing 

PCSK9 rs11591147 R46L -0.23 Destabilizing 

PCSK9 rs151193009 R93C -0.31 Destabilizing 

LPL rs268 N318S +0.42 Stabilizing 

LIPA rs1051338 T16P -0.02 Destabilizing 

Table 6. Predicted alterations in protein stability upon nsSNPs using mCSM 

Gene rsID Amino Acid Change ΔΔG (kcal/mol) Stability Prediction Structural Representation 

APOA5 rs2075291 G185C +0.39 Destabilizing 

  
PCSK9 rs11591147 R46L +0.23 Destabilizing 

  
PCSK9 rs151193009 R93C +0.23 Destabilizing 

  
LPL rs268 N318S +0.31 Destabilizing 

  
LIPA rs1051338 T16P +0.02 Destabilizing 
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Table 7. Molecular docking analysis of wild-type and mutant CAD-associated proteins with their interacting ligands 

Protein 

Variant 

Ligand Binding Energy 

(kcal/mol) 

Key Interacting Residues 

APOA5 

(WT) 

APOC3 -1208.9 LEU14, PHE18, ARG24, HIS45, GLU138, GLN145, GLN148, GLU149, TYR194, ARG204, ARG211, 

ARG282, GLN286 

APOA5 

(G185C) 

APOC3 -1205.2 LEU14, ARG24, HIS45, GLU138, GLN145, GLN148, GLU149, TYR194, ARG204, ARG211, ARG282, 

GLN286 

PCSK9 

(WT) 

LDLR -1911.1 SER6, ARG7, ARG8, SER9, TRP10, TRP11, PRO12, LEU17, LEU18, LEU19, ALA26, GLY27, ASP37, 

SER47, GLU48, GLU49, ARG46, VAL42, GLU40, HIS87, GLN90, ARG93, ARG96, ARG97, ARG104, 

TYR293, ARG306, ARG476, GLU567 

PCSK9 

(R46L) 

LDLR -1633.9 PHE64, HIS65, ARG66, HIS87, SER89, GLU92, ARG104, LYS136, THR214, ARG215, HIS217, ASP238, 

ARG272, TYR293, ARG306, GLU332, ARG357, ASP374, THR377, CYS378, ARG476 

PCSK9 

(R93C) 

LDLR -1536.5 LEU17, ALA26, SER46, HIS66, ARG68, HIS87, SER90, SER93, HIS217, TYR293, ARG306, THR377, 

ASP374, ARG476, GLU566 

LPL (WT) GPIHBP1 -1432.8 ARG290, SER292, LEU303, SER304, ARG306, LYS307, ARG309, LYS327, LYS346, HIS348, GLY351, 

SER354, THR385, ASN386, TRP420, ARG432, LYS434 

LPL 

(N318S) 

GPIHBP1 -1396.3 ARG219, ARG290, SER292, LEU303, SER304, ARG306, LYS307, ARG309, ARG324, LYS327, LYS346, 

GLY351, THR352, SER354, THR385, ASN386, TRP420, ARG432, LYS434 

LIPA (WT) SCGB1D2 -1343.1 THR27, HIS250, ARG270, SER275, HIS344, LEU381 

LIPA 

(T16P) 

SCGB1D2 -1013.9 THR27, HIS250, ARG270, SER275, HIS344, LEU381 

Table 8. Predicted drug–gene interactions of CAD-associated variants with approved antihypercholesterolemic agents 

Gene Drug Indication Interaction Score DrugBank ID 

APOA5 Rosuvastatin Antihypercholesterolemic agent 0.87 DB01098 

PCSK9 Lomitapide Mesylate Antihypercholesterolemic agent 0.80 DB08827 

LPL Clofibrate Anticholesteremic agent 0.11 DB00636 

LIPA Lovastatin Antihypercholesterolemic agent 0.44 DB00227 

 

 

Figure 3 Comparative structural modeling and Ramachandran plot validation of wild-type and mutant CAD-associated proteins. 

This figure presents the modeled three-dimensional (3D) structures of coronary artery disease (CAD)–associated proteins in both wild-type and 

mutant forms, alongside their respective Ramachandran plots for conformational validation. In panel A, APOA5 wild-type (yellow) and mutant 

G185C (green) are shown, with the Ramachandran plots highlighting subtle deviations in φ–ψ angle distribution that reflect destabilizing effects 

introduced by the mutation. Panel B displays PCSK9 wild-type (yellow) and mutants R46L (green) and R93C (blue), where conformational 

differences are evident in loop and helical regions, and Ramachandran plots reveal altered residue distributions in disallowed regions, consistent 

with reduced stability. Panel C illustrates LPL wild-type (yellow) and mutant N318S (green), where structural superimposition reveals local 

distortions near the catalytic domain, supported by Ramachandran plots showing increased outlier residues indicative of impaired folding. Panel 

D shows LIPA wild-type (yellow) and mutant T16P (green), where the mutation introduces perturbations in the N-terminal secondary structure, 

with Ramachandran plots confirming significant deviations in residue orientation that reduce stability and flexibility. Collectively, these 

comparative modeling and validation analyses confirm that CAD-related nsSNPs (APOA5 G185C, PCSK9 R46L and R93C, LPL N318S, and 

LIPA T16P) introduce destabilizing conformational changes that may compromise structural integrity and functional activity of the proteins. 

 

Figure 4 Figure X. Protein–protein interaction (PPI) networks of CAD-associated genes predicted by STRING. 

The interaction maps illustrate the functional associations of (A) APOA5, (B) PCSK9, (C) LPL, and (D) LIPA with their respective interacting 

partners. Each node represents a protein, and edges indicate predicted interactions supported by experimental data, co-expression, text mining, and 

curated databases. APOA5 showed extensive connectivity with other apolipoproteins (APOA1, APOC1, APOC2, APOC3, APOB), highlighting 

its central role in lipid transport and metabolism. PCSK9 was strongly linked with LDLR, APOB, and HMGCR, reflecting its involvement in 
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cholesterol regulation. LPL demonstrated multiple connections with GPIHBP1, APOC2, and APOE, consistent with its role in triglyceride 

hydrolysis and lipid clearance. LIPA clustered with cholesterol metabolism proteins (CYP27A1, CYP46A1, DHCR24), confirming its role in 

lysosomal lipid degradation. Overall, these networks emphasize that mutations in CAD-associated genes may disrupt critical lipid regulatory 

pathways through altered protein–protein interactions, contributing to disease susceptibility. 

 

Figure 5 Comparative docking analysis of wild-type and mutant CAD-associated proteins with therapeutic ligands. 

DISCUSSION 

Single nucleotide polymorphisms (SNPs) are the most prevalent form of genetic variation, occurring across both coding and non-coding regions 

of the human genome. Among these, non-synonymous SNPs (nsSNPs) are of particular clinical relevance, as they result in amino acid substitutions 

that can disrupt protein stability, folding, and intermolecular interactions. Such structural perturbations can compromise essential biological 

processes and contribute to the etiology of complex diseases, including coronary artery disease (CAD) (1–3). The characterization of nsSNPs in 

CAD-related genes is therefore critical for advancing biomarker discovery and therapeutic development. 
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In this study, we applied a multi-layered in-silico framework to systematically evaluate five nsSNPs within four CAD-associated genes—APOA5, 

PCSK9, LPL, and LIPA. To overcome the inherent limitations of single predictors, we incorporated a range of computational approaches spanning 

evolutionary conservation–based tools (SIFT, PROVEAN, Mutation Assessor) (14–16), machine learning–based classifiers (PolyPhen-2, SNAP2, 

SuSPect) (17–19), and consensus methods such as Meta-SNP (20). Despite methodological variability, APOA5 G185C, PCSK9 R46L and R93C, 

and LIPA T16P were consistently predicted as deleterious, while LPL N318S exhibited a mixed profile, being largely neutral in some algorithms 

but pathogenic in others. This highlights the value of integrative predictions in distinguishing high-confidence risk variants from background 

polymorphisms. 

Structural and stability analyses further reinforced these findings. Solvent accessibility assessments revealed that most variants occurred at surface-

exposed residues, predisposing them to disrupt ligand recognition or protein–protein interactions (25,26). Stability prediction tools, including I-

Mutant, MUpro, mCSM, and DynaMut2, demonstrated predominantly negative ΔΔG values (21,22,27,28), confirming destabilizing effects. Such 

decreases in thermodynamic stability are hallmarks of disease-associated mutations and may impair proper protein folding, leading to functional 

insufficiency. Interestingly, LPL N318S displayed a stabilizing effect in DynaMut2, suggesting a context-dependent mechanism that warrants 

further biochemical validation. 

At the systems level, protein–protein interaction (PPI) mapping revealed that these variants perturb key regulatory hubs involved in lipid transport 

and cholesterol metabolism. For example, APOA5 clustered with multiple apolipoproteins, PCSK9 maintained critical associations with LDLR 

and HMGCR, and LIPA was linked to cholesterol degradation enzymes (32). Disruption of such densely interconnected networks may impair 

lipoprotein clearance, accelerate atherosclerosis, and promote CAD progression. 

Molecular docking analyses provided further mechanistic insights. Mutations in PCSK9 substantially weakened its binding affinity with LDLR, 

consistent with its known role in cholesterol regulation (10,11). Similarly, LPL N318S and LIPA T16P displayed reduced interaction energies with 

GPIHBP1 and SCGB1D2, respectively, supporting their potential pathogenicity in lipid metabolism (9,13). APOA5 G185C maintained near-native 

binding energies but altered specific residue interactions with APOC3, suggesting subtle functional consequences. These results collectively 

indicate that nsSNP-induced perturbations compromise not only structural stability but also intermolecular communication, thereby amplifying 

their pathogenic impact. 

Taken together, the findings emphasize the utility of integrated computational pipelines in dissecting the molecular consequences of nsSNPs. By 

combining sequence-based prediction, conservation analysis, structural modeling, stability assessments, PPI network mapping, and molecular 

docking, this study provides a robust framework for prioritizing variants with the greatest likelihood of functional impact in CAD. 

CONCLUSION 

This study comprehensively evaluated five nsSNPs across four CAD-associated genes—APOA5, PCSK9, LPL, and LIPA—using an integrative 

in-silico strategy. Pathogenicity predictors consistently identified APOA5 G185C, PCSK9 R46L and R93C, and LIPA T16P as deleterious (14–

20), while structural and stability models revealed destabilizing conformational changes in most variants (21,22,27,28). Protein–protein interaction 

analysis demonstrated that these genes act as central regulators in lipid metabolic pathways (32), and molecular docking confirmed reduced binding 

affinities and altered interaction profiles with physiological partners (9–13,34,35). 

The strength of this work lies in its multi-dimensional approach, which bridges molecular predictions with network-level consequences, thereby 

generating a comprehensive molecular portrait of CAD-related genetic variants. Such in-silico frameworks are valuable for identifying high-risk 

mutations, informing drug–gene interactions, and guiding experimental priorities. 

Nevertheless, computational predictions remain probabilistic and require validation. Future studies should integrate biochemical assays, cell-based 

functional models, and patient-derived data to confirm the pathogenicity of these variants and to explore their potential as diagnostic markers or 

therapeutic targets. Ultimately, the synergy of computational and experimental approaches will be essential for advancing precision medicine 

strategies in coronary artery disease. 
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